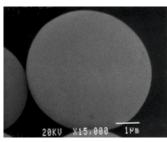

# **HyperSol**


The full coverage bonded HyperSol silica packing provides exceptionally high stability and high efficiency. Proprietary surface modification to ensure uniform and inert surface of column. HyperSol is ultra pure (purity > 99.999% SiO2) spherical, and totally porous silica. Narrow Pore Size (120Å) and Particles size distribution. enhance chromatography seperation.

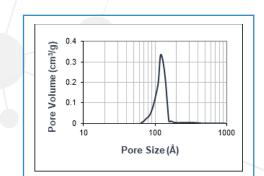
- High surface area for strong retention of hydrophobic and polar compounds
- Enhanced mechanical stability
- Range of particle size from 3 µm to 10 µm for analytical to preparative applications

These columns are suitable for analysis of acidic, neutral and basic organic compound as well as pharmaceuticals API, formulations and peptides.

### SEM Pictures of HyperSol Particles






The pictures show the uniformity of the particle sizes and smoothness of particle surface, which enables more uniform packing with less channeling effect. This leads to lower back pressure and the higher column efficiency. Our silica has a surface area of  $320 \text{ m}^2/\text{g}$  with a controlled mean pore size of 120 Å.

**ChromoSep** 

Rapid

Repeatability

Retention





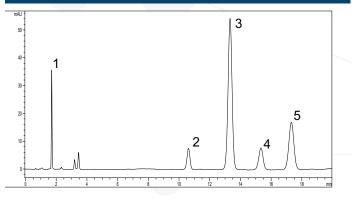
# **Trace Amount Metal Contents Test**

Chromatographic test of trace amount of metal contents in the column is to compare the peak symmetry of one pair of positional isomers (, 4,4'-dipyridyl and 2,2'-dipyridyl,) one neutral chelating reagent (, 2,2-dihydroxylnaphthalene. 4,4'-dipyridyl), which cannot form chelating complex with metalis used as a reference. Chealiting reagents are (2,2'-dipyridyl and 2,2-dihydroxylnaphthalene,) are sensitive to trace amount metal contents in silica. Type A sil or type B silica based C18 column with higher metal content column are analyzed by using standards of 2,2'-dipyridyl and 2,2-dihydroxylnaphthalene peaks would tail or even totally disappear.

# **Trace Amount Metal Contents**

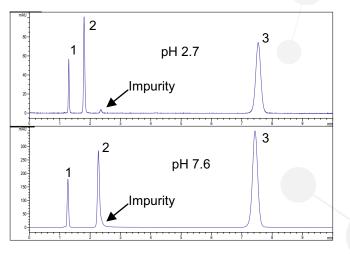
Test Using Chelating Compounds below fig needs to be replaced




- Develop and improve analytical HPLC method
- Excellent performance, exceptionally rugged USP phases
- Exceptional lot-to-lot reproducibility

| Packing Material | Partical Size<br>(µm) | Pore Size<br>(Å) | Surface Area<br>(m²/g) | Carbon Load<br>% | End Capping | pH Stability |
|------------------|-----------------------|------------------|------------------------|------------------|-------------|--------------|
| HyperSol 18      | 3, 5, 10 µm           | 120              | 320 m²/g               | 17               | Yes         | 2.5-9.5      |
| HyperSol C8      | 3, 5, 10 μm           | 120              | 320 m²/g               | 17               | Yes         | 2.5-9.5      |
| HyperSol AQ C18  | 3, 5, 10 µm           | 120              | 320 m²/g               | 17               | Yes         | 2.5-9.5      |

# HyperSol C18


- The most universal C18 for most of the chromatographic application
- High surface area coverage and exhaustive endcapping
- Excellent peak shape for polar compounds and strong
- · Exceptional batch-to-batch and column-to-column reproducibility
- Available in dimensions from analytical to preparative for all sample sizes

### Steric Selectivity and Hydrophobicity Test



| Column       | HyperSolC 18, 4.6 x 150 mm, 5 µm                                                               |
|--------------|------------------------------------------------------------------------------------------------|
| Mobile Phase | 80% MeOH / 20% water                                                                           |
| Flow Rate    | 1 ml/min                                                                                       |
| Detector     | 254 nm                                                                                         |
| Temp         | 25 °C                                                                                          |
| Sample       | <ol> <li>Uracil 2) Butylbenzene 3) Triphenylene</li> <li>Amylbenzene 5) o-Terphenyl</li> </ol> |

### Ion Exchange Capacity at pH 2.7 and 7.6



| Column       | HyperSol C18, 4.6 x 100 mm, 5 μm   |
|--------------|------------------------------------|
| Mobile Phase | 30% MeOH 70% 20 phosphate          |
| Flow Rate    | 1 ml/min                           |
| Detector     | 215 nm                             |
| Temp         | 25 °C                              |
| Sample       | 1) Uracil 2) Benzylamine 3) Phenol |

#### Steric Selectivity:

Steric selectivity refers to the ability of the stationary phase to recognize the difference between the similar structures but different shapes of molecules.

Polyaromatic hydrocarbons such as o-terphenyl and triphenylene are most used to characterize steric selectivity due to their relative ability to bend and twist out of shape.

#### Hydrophobicity

Hydrophobic retention and selectivity, as well as steric selectivity, are used to determine hydrophobicity characteristic. The capacity factors of amylbenzene and 1-butylbenzene give a broad measurement of hydrophobic retention and selectivity.

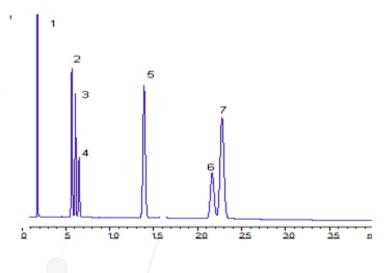
#### Ion Exchange Capacity

the majority of silanol groups (Si-OH) are un-dissociated at pH < 3 which, do not contribute to retention of protonated amines. However, if the surface silanols are not uniform and there are some very acidic silanols left on the silica surface, those acidic silanols will be still in dissociated form (SiO-), which will contribute to the retention of protonated amines by ion exchange interaction and also cause peak tailing. all of the surface silanol at pH > 7, groups are dissociated to form ion exchange (SiO-) sites that increase the retention of protonated amines.

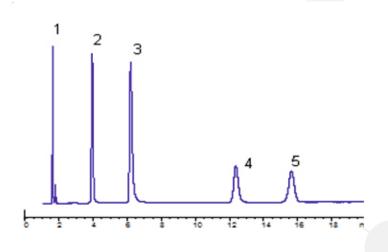
Tanaka et al mixture containing benzylamine and phenol is analyzed to investigate ion exchange behavior of HyperSol C18 at pH 2.7 and 7.6. The relative retention of benzylamine to phenol shows important ion exchange characteristics of the packing. The peak of the strong base, benzylamine, is symmetric at both pH 2.7 and 7.6, iindicates the uniformity of ion-exchange sites on the surface.

ChromoSep Technologies Private Limited




# HyperSol C18




# Applications

# Separation of Organic Acids

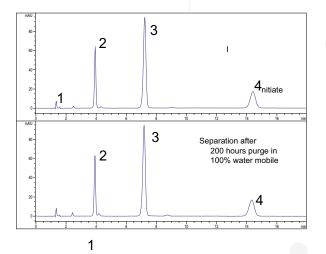
| Column       | HyperSol C18, 4.6 x 150 mm, 5 μm                                                                                                                                                                  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mobile Phase | 25% MeOH / 75% 20mM phosphate, pH 2.7                                                                                                                                                             |
| Flow Rate    | 1 ml/min                                                                                                                                                                                          |
| Detector     | 230 nm                                                                                                                                                                                            |
| Temp         | 40 °C                                                                                                                                                                                             |
| Sample       | <ol> <li>Thiourea</li> <li>2-Nitrobenzoic acid</li> <li>4-Hydroxybenzoic acid</li> <li>Phthalic acid</li> <li>3-Cyanobenzoic acid</li> <li>2-Acetoxybenzoic acid</li> <li>Benzoic acid</li> </ol> |



# Separation of tricyclic antidepressants (TCAs) at pH 7.0

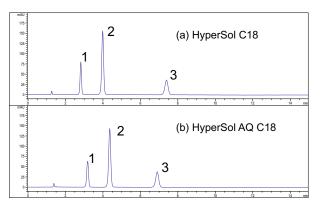


| Column       | HyperSol C18,4.6 x 150 mm, 5 µm                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mobile Phase | 20% 20 mM phosphate/80%MeOH, pH 7.0                                                                                                |
| Flow Rate    | 1 ml/min                                                                                                                           |
| Detector     | 215 nm                                                                                                                             |
| Temp         | 40 °C                                                                                                                              |
| Sample       | <ol> <li>1) Uracil</li> <li>2) Propranolol</li> <li>3) Nortriptyline</li> <li>4) Amitriptyline</li> <li>5) Trimipramine</li> </ol> |
|              |                                                                                                                                    |

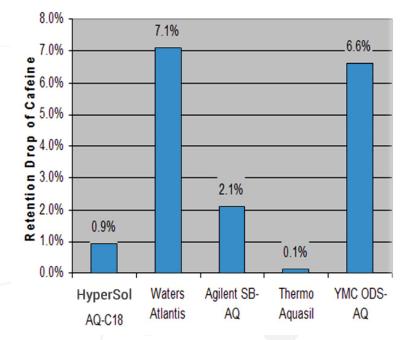

# HyperSol AQ-C18



- Phase stability is improved significantly which is suitable for high aqueous mobile phase
- Endcapped for excellent peak shape of polar, acidic and basic compounds
- Increased retention for polar and water soluble compounds
- Excellent for water soluble compounds that typically cannot be retained on traditional C18 phase


### Phase collapse research

No Phase Collapse Under 100% Aqueous Mobile Phase




| Column       | HyperSol AQ-C18 4.6 x 100 mm, 5 µm                 |
|--------------|----------------------------------------------------|
| Mobile Phase | 10%ACN/90% 50 mM phosphate, pH 3.5                 |
| Flow Rate    | 1 ml/min                                           |
| Detector     | 215 nm                                             |
| Temp         | 25 °C                                              |
| Sample       | 1) Uracil 2) Theophylline 3) Caffeine<br>4) Phenol |

### Comparison of Selectivity of HyperSol C18 and HyperSol AQ-C18

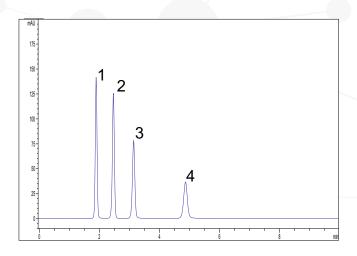


# Phase collapse comparison with other brands



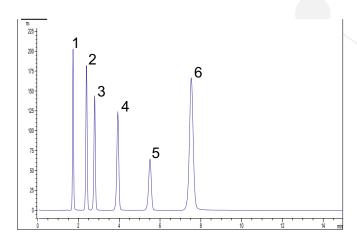
Under the same condition, when compared with other AQ-C18 columns at highly aqueous mobile phase, HyperSol AQ-C18 shows excellent resistant to phase collapse.

| 1            |                                                          |
|--------------|----------------------------------------------------------|
| Column       | 4.6 x 100 mm, 5 μm<br>a) HyperSol C18 b) HyperSol AQ-C18 |
| Mobile Phase | 30% MeOH / 70% water                                     |
| Flow Rate    | 1 ml/min                                                 |
| Detector     | 215 nm                                                   |
| Temp         | 25 °C                                                    |
| Sample       | 1) Theophylline 2) Caffeine 3) Phenol                    |


#### ChromoSep Technologies Private Limited

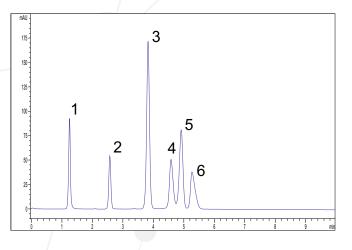
# HyperSol C18




### Applications

### Separation of Water-Soluble Vitamins




| Column       | HyperSol AQ-C18, 4.6 x 100 mm, 5 μm                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------|
| Mobile Phase | 50 mM phosphate, pH 2.5                                                                                                    |
| Flow Rate    | 1 ml/min                                                                                                                   |
| Detector     | 210 nm                                                                                                                     |
| Temp         | 40 °C                                                                                                                      |
| Injection    | 1 µl                                                                                                                       |
| Sample       | <ol> <li>1) Oxalic acid 2) Lactic acid 3) Maleic acid,</li> <li>4) Citric acid 5) Fumaric acid 6) Succinic acid</li> </ol> |

## Separation of Basic Nucleotides and Purines

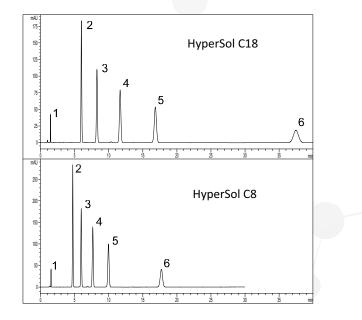


|   | Column       | HyperSol AQ-C18, 4.6 x 100 mm, 5 µm                                                                 |
|---|--------------|-----------------------------------------------------------------------------------------------------|
|   | Mobile Phase | 50 mM phosphate, pH 3.0                                                                             |
| - | Flow Rate    | 1 ml/min                                                                                            |
|   | Detector     | 254 nm                                                                                              |
|   | Temp         | 25 °C                                                                                               |
|   | Injection    | 1 µl                                                                                                |
|   | Sample       | <ol> <li>Thiamine (B1) 2) Ascorbic acid (Vitamin C),</li> <li>Nicotinic acid 4) Nicotine</li> </ol> |

# Separation of Organic Acid

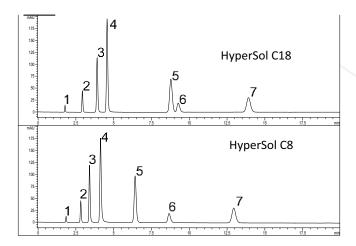


| Column       | HyperSol AQ-C18, 4.6 x 100 mm, 5 µm                                                           |
|--------------|-----------------------------------------------------------------------------------------------|
| Mobile Phase | 50 mMNaOAc/HOAc, pH 4.6                                                                       |
| Flow Rate    | 1 ml/min                                                                                      |
| Detector     | 254 nm                                                                                        |
| Temp         | 25 °C                                                                                         |
| Sample       | <ol> <li>Cytosine 2) Fluorouracil 3) Uracil</li> <li>Guanine 5) Thymine 6) Adenine</li> </ol> |




### Less Retentive than HyperSol C18

The HyperSol C8 phase is, more useful for compounds that are too strongly retained on C18 phase, and it is very useful for LC/MS applications, where the long retention is not required. HyperSol C8 can save significant analytical time while separation of neutral or highly retained compounds at C18 column, However, when separating polar compounds, HyperSol C8 column provides alternative selectivity than HyperSol C18 column.


- Selectivity choices for method development optimization
- · Good peak shape for basic, acidic and neutral compounds
- High performance over a wide pH range
- + Particle sizes from 3 to 10  $\mu m$
- · Long lifetime with extra dense bonding and double endcapping

### Comparison of Retention of HyperSol C18 and HyperSol C8 on Neutral Compounds



| Column       | 4.6 x 150 mm, 5 μm                                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| Mobile Phase | 30% water/70% ACN                                                                                                               |
| Flow Rate    | 1 ml/min                                                                                                                        |
| Detector     | 215 nm                                                                                                                          |
| Temp         | 25 °C                                                                                                                           |
| Sample       | <ol> <li>1) Uracil 2) Ethylbenzene 3) Propylbenzene</li> <li>4) Butylbenzene 5) Amylbezene</li> <li>6) Heptylbenzene</li> </ol> |

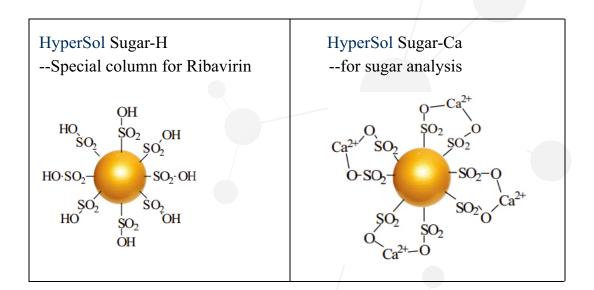
### Comparison of Retention of HyperSol C18 and HyperSol C8 on Polar Compounds



| Column       | 4.6 x 150 mm, 5 μm                                                                                                                       |   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|---|
| Mobile Phase | 30% water/70% ACN                                                                                                                        | ( |
| Flow Rate    | 1 ml/min                                                                                                                                 |   |
| Detector     | 215 nm                                                                                                                                   |   |
| Temp         | 25 °C                                                                                                                                    |   |
| Sample       | <ol> <li>Thiourea 2) Benzylamine</li> <li>Aminoquinoline 4) Phthalazine 5) Caffeine</li> <li>4-Ethylaniline 7) Benzyl alcohol</li> </ol> |   |



### Polymer Particles Based HyperSol


Sugar and Organic Acid Analysis

- Excellent resolution for analyte peak
- Excellent lot-to-lot reproducibility of column
- Highly cost effective compare to recommended alternative to Bio-Rad Aminex<sup>™</sup>, Waters Sugar-Pak<sup>™</sup>, Supelco Supelcogel<sup>™</sup>, Phenomenex REZEX<sup>™</sup>.

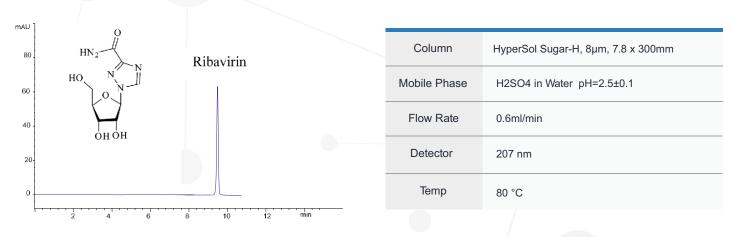
### HyperSol Sugar Columns

HyperSol Sugar Columns contain low-linking sulfonated styrene-divinylbenzene spheres (PS/DVB) in 5, 8 and 10% cross-link forms as well as various ionic forms, including calcium, hydrogen. This columns specifically designed for high resolution separation of carbohydrates, organic acids, Ribavirin, peptides and nucleic acids.

The separation mechanism for HyperSol Sugar phases includes ion-exchange and hydrophilic interactions with the analytes. The separation mechanism due to size exclusion, ion exclusion, and ligand exchange. These multiple modes of interaction enable a unique capability to separate a variety of water soluble compounds

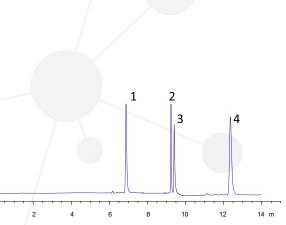


Characteristics of HyperSol Sugar Columns


- · Compatibility with most aqueous mobile phases, including pure water as the eluent
- Wide operating-temperature range (20 90 °C)
- pH range (1-3) for Sugar -H and (5-9) for Sugar-Ca phase
- Analytical and preparative columns



### HyperSol Sugar-H

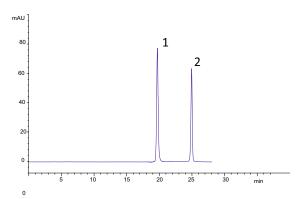

### Special column for Ribavirin

Ribavirin is an anti-viral drug used by many hospitals in the treatment of respiratory syncytial virus infection. It is considered by some physicians to be an effective and sometimes life-saving drug, but studies have also indicated that the drug may pose a reproductive risk to health care workers



### Separation of Cellobiose, Glucose, Mannitol and Acetic acid

| Column       | HyperSol Sugar-H, 8µm, 7.8 x 300mm | mAU |  |
|--------------|------------------------------------|-----|--|
| Mobile Phase | 9mM H2SO4                          | 20  |  |
| Flow Rate    | 0.5ml/min                          | 15  |  |
| Detector     | UV                                 | 10  |  |




### HyperSol Sugar Column

#### HyperSol Sugar-Ca

HyperSol Sugar-Ca Column is packed with Ca2+ modified PS/DVB resins with the particle size of 5µm and 8µm. The The Sugar-Ca column is used for the analysis of sugar products such as hydrolysis of beet, cane, and starch in streams processing plants. Glucose, fructose, maltose, and maltotriose can be separated from higher oligomers found in typical corn syrups.

#### The separation of Mannitol and Sorbitol



| Column       | HyperSol Sugar-Ca, 8µm, 7.8 x 300mm |  |
|--------------|-------------------------------------|--|
| Mobile Phase | Water                               |  |
| Flow Rate    | 0.5ml/min                           |  |
| Detector     | RI                                  |  |
| Temp         | 80 °C                               |  |